Copied to
clipboard

G = C23.405C24order 128 = 27

122nd central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.405C24, C24.580C23, C22.2012+ (1+4), C22⋊C4.8Q8, C428C433C2, C23.121(C2×Q8), C2.22(D43Q8), (C22×C4).80C23, C23.312(C4○D4), C22.88(C22×Q8), (C2×C42).525C22, (C23×C4).102C22, C23.7Q8.49C2, C23.8Q8.22C2, C22.14(C42.C2), C23.83C2327C2, C23.63C2367C2, C23.81C2327C2, C23.65C2374C2, C2.19(C22.32C24), C2.30(C22.45C24), C2.C42.156C22, C2.52(C23.36C23), (C2×C4).41(C2×Q8), (C4×C22⋊C4).54C2, C2.10(C2×C42.C2), (C2×C4).377(C4○D4), (C2×C4⋊C4).271C22, C22.282(C2×C4○D4), (C2×C22⋊C4).502C22, (C2×C2.C42).27C2, SmallGroup(128,1237)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.405C24
C1C2C22C23C24C23×C4C2×C2.C42 — C23.405C24
C1C23 — C23.405C24
C1C23 — C23.405C24
C1C23 — C23.405C24

Subgroups: 420 in 228 conjugacy classes, 104 normal (82 characteristic)
C1, C2 [×7], C2 [×4], C4 [×18], C22 [×7], C22 [×4], C22 [×12], C2×C4 [×8], C2×C4 [×50], C23, C23 [×6], C23 [×4], C42 [×3], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×13], C22×C4 [×14], C22×C4 [×14], C24, C2.C42 [×16], C2×C42 [×2], C2×C22⋊C4 [×4], C2×C4⋊C4 [×10], C23×C4 [×3], C2×C2.C42, C4×C22⋊C4, C23.7Q8, C428C4, C23.8Q8 [×4], C23.63C23 [×2], C23.65C23, C23.81C23, C23.83C23 [×3], C23.405C24

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×8], C24, C42.C2 [×4], C22×Q8, C2×C4○D4 [×4], 2+ (1+4) [×2], C2×C42.C2, C23.36C23, C22.32C24, C22.45C24 [×2], D43Q8 [×2], C23.405C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=g2=1, d2=c, e2=ba=ab, f2=b, ac=ca, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 23 47)(2 60 24 20)(3 29 21 45)(4 58 22 18)(5 42 62 26)(6 15 63 55)(7 44 64 28)(8 13 61 53)(9 57 49 17)(10 30 50 46)(11 59 51 19)(12 32 52 48)(14 36 54 38)(16 34 56 40)(25 37 41 35)(27 39 43 33)
(1 55 51 43)(2 44 52 56)(3 53 49 41)(4 42 50 54)(5 32 36 20)(6 17 33 29)(7 30 34 18)(8 19 35 31)(9 25 21 13)(10 14 22 26)(11 27 23 15)(12 16 24 28)(37 47 61 59)(38 60 62 48)(39 45 63 57)(40 58 64 46)
(1 3)(2 10)(4 12)(5 40)(6 8)(7 38)(9 11)(13 15)(14 44)(16 42)(17 19)(18 48)(20 46)(21 23)(22 52)(24 50)(25 27)(26 56)(28 54)(29 31)(30 60)(32 58)(33 35)(34 62)(36 64)(37 39)(41 43)(45 47)(49 51)(53 55)(57 59)(61 63)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46), (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,60,24,20)(3,29,21,45)(4,58,22,18)(5,42,62,26)(6,15,63,55)(7,44,64,28)(8,13,61,53)(9,57,49,17)(10,30,50,46)(11,59,51,19)(12,32,52,48)(14,36,54,38)(16,34,56,40)(25,37,41,35)(27,39,43,33), (1,55,51,43)(2,44,52,56)(3,53,49,41)(4,42,50,54)(5,32,36,20)(6,17,33,29)(7,30,34,18)(8,19,35,31)(9,25,21,13)(10,14,22,26)(11,27,23,15)(12,16,24,28)(37,47,61,59)(38,60,62,48)(39,45,63,57)(40,58,64,46), (1,3)(2,10)(4,12)(5,40)(6,8)(7,38)(9,11)(13,15)(14,44)(16,42)(17,19)(18,48)(20,46)(21,23)(22,52)(24,50)(25,27)(26,56)(28,54)(29,31)(30,60)(32,58)(33,35)(34,62)(36,64)(37,39)(41,43)(45,47)(49,51)(53,55)(57,59)(61,63) );

G=PermutationGroup([(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,23,47),(2,60,24,20),(3,29,21,45),(4,58,22,18),(5,42,62,26),(6,15,63,55),(7,44,64,28),(8,13,61,53),(9,57,49,17),(10,30,50,46),(11,59,51,19),(12,32,52,48),(14,36,54,38),(16,34,56,40),(25,37,41,35),(27,39,43,33)], [(1,55,51,43),(2,44,52,56),(3,53,49,41),(4,42,50,54),(5,32,36,20),(6,17,33,29),(7,30,34,18),(8,19,35,31),(9,25,21,13),(10,14,22,26),(11,27,23,15),(12,16,24,28),(37,47,61,59),(38,60,62,48),(39,45,63,57),(40,58,64,46)], [(1,3),(2,10),(4,12),(5,40),(6,8),(7,38),(9,11),(13,15),(14,44),(16,42),(17,19),(18,48),(20,46),(21,23),(22,52),(24,50),(25,27),(26,56),(28,54),(29,31),(30,60),(32,58),(33,35),(34,62),(36,64),(37,39),(41,43),(45,47),(49,51),(53,55),(57,59),(61,63)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
100000
010000
004000
000400
000040
000004
,
400000
040000
001000
000100
000010
000001
,
200000
020000
002200
001300
000040
000031
,
420000
010000
001000
003400
000030
000003
,
400000
410000
003000
004200
000032
000002
,
400000
040000
001000
003400
000010
000001

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,1,0,0,0,0,2,3,0,0,0,0,0,0,4,3,0,0,0,0,0,1],[4,0,0,0,0,0,2,1,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[4,4,0,0,0,0,0,1,0,0,0,0,0,0,3,4,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,2,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,3,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4V4W4X4Y4Z
order12···2222244444···44444
size11···1222222224···48888

38 irreducible representations

dim11111111112224
type++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2Q8C4○D4C4○D42+ (1+4)
kernelC23.405C24C2×C2.C42C4×C22⋊C4C23.7Q8C428C4C23.8Q8C23.63C23C23.65C23C23.81C23C23.83C23C22⋊C4C2×C4C23C22
# reps11111421134882

In GAP, Magma, Sage, TeX

C_2^3._{405}C_2^4
% in TeX

G:=Group("C2^3.405C2^4");
// GroupNames label

G:=SmallGroup(128,1237);
// by ID

G=gap.SmallGroup(128,1237);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,344,758,723,184,675]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=g^2=1,d^2=c,e^2=b*a=a*b,f^2=b,a*c=c*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽